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Abstract

No significant general-purpose method is currently
available to mechanically transform system require-
ments into a provably equivalent model. The widespread
use of such a method represents a necessary step to-
ward high-dependability system engineering for numer-
ous application domains. Current tools and methods that
start with a formal model of a system and mechanically pro-
duce a provably equivalent implementation are valuable but
not sufficient. The “gap” unfilled by such tools and meth-
ods is that the formal models cannot be proven to be
equivalent to the requirements. We offer a method for me-
chanically transforming requirements into a provably
equivalent formal model that can be used as the ba-
sis for code generation and other transformations. This
method is unique in offering full mathematical tractabil-
ity while using notations and techniques that are well
known and well trusted. Finally, we describe further ap-
plication areas we are investigating for use of the ap-
proach.
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1. Introduction

Development of a system that will have a high level of re-
liability requires the developer to represent the system as a
formal model that can be proven to be correct. Through the
use of currently available tools, the model can then be auto-
matically transformed into code with minimal or no human
intervention to reduce the chance of inadvertent insertion
of errors by developers. Automatically producing the for-
mal model from customer requirements would further re-
duce the chance of insertion of errors by developers.

The need for ultra-high dependability systems increases
continually, along with a correspondingly increasing need

to ensure correctness in system development. By “correct-
ness”, we mean that the implemented system is equivalent
to the requirements, and that this equivalence can be proved
mathematically.

Available system development tools and methods that
are based on formal models provide neither automated gen-
eration of the models from requirements nor automated
proof of correctness of the models. Hence, today there is
no automated means to produce a system or a procedure
that is a provably correct implementation of the customer’s
requirements. Further, requirements engineering as a disci-
pline has yet to produce an automated, mathematics-based
process for requirements validation.

2. Problem Statement

Automatic code generation from requirements has been
the ultimate objective of software engineering almost since
the advent of high-level programming languages, and calls
for a “requirements-based programming” capability have
become deafening [9]. Several tools and products exist in
the marketplace for automatic code generation from a given
model. However, they typically generate code, portions of
which are never executed, or portions of which cannot be
justified from either the requirements or the model. More-
over, existing tools do not and cannot overcome the funda-
mental inadequacy of all currently available automated de-
velopment approaches, which is that they include no means
to establish a provable equivalence between the require-
ments stated at the outset and either the model or the code
they generate.

Traditional approaches to automatic code generation, in-
cluding those embodied in commercial products such as
Matlab [20], in system development toolsets such as the B-
Toolkit [19] or the VDM++ toolkit [17], or in academic re-
search projects, presuppose the existence of an explicit (for-
mal) model of reality that can be used as the basis for sub-
sequent code generation, as shown in Figure 1 (a). While
such an assumption is reasonable, the advantages and disad-
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Figure 1. (a) Traditional software develop-
ment process from requirements to code,
and (b) reverse engineering from code to a
system description.

vantages of the various modeling approaches used in com-
puting are well known and certain models can serve well
to highlight certain issues while suppressing other less rel-
evant details [22]. It is clear that the converse is also true.
Certain models of reality, while successfully detailing many
of the issues of interest to developers, can fail to capture
some important issues, or perhaps even the most important
issues. Existing reverse-engineering approaches suffer from
a similar plight. Typically (see Figure 1 (b)), a model is
extracted from an existing system and is then represented
in various ways, for example as a digraph [21]. The re-
engineering process then involves using the resulting rep-
resentation as the basis for code generation, as above.

2.1. Specifications, Models, and Designs

The model on which automatic code generation is
based is referred to as a design, or more correctly, a de-
sign specification. There is typically a mismatch be-
tween the design and the implementation (sometimes
termed the “specification-implementation gap”), in that
the process of going from a suitable design to an imple-
mentation involves many practical decisions that must
be made by the automated tool used for code genera-
tion without any clear-cut justifications, other than the
predetermined implementation decisions of the tool de-
signers. There is a more problematic “gap”, termed the
“analysis-specification gap,” that emphasizes the prob-
lem of capturing requirements and adequately representing
them in a specification that is clear, concise, and com-
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Figure 2. The R2D2C approach, generating a
formal model from requirements and produc-
ing code from the formal model, with auto-
matic reverse engineering.

plete. Unless the specification is formal, proof of cor-
rectness is impossible [1]. Unfortunately, many are reluc-
tant to embrace formal specification techniques, believ-
ing them to be difficult to use and apply [2] [7], despite
many industrial success stories [11] [12] [13] [24]. Our ex-
perience at NASA Goddard Space Flight Center (GSFC)
has been that while engineers are happy to write de-
scriptions as natural language scenarios, or even using
semi-formal notations such as Unified Modeling Lan-
guage (UML) use cases, they are loath to undertake formal
specification.

2.2. A Novel Approach

The approach described herein, provisionally named
R2D2C (“Requirements to Design to Code”), provides
mathematically tractable round-trip engineering for sys-
tem development.

In this approach, engineers (or others) may write require-
ments as scenarios in constrained (domain-specific) natural
language, or in a range of other notations (including UML
use cases). These will be used to derive a formal model (Fig-
ure 2) that is guaranteed to be equivalent to the requirements
stated at the outset, and which will subsequently be used as
a basis for code generation. The formal model can be ex-
pressed using a variety of formal methods. Currently we are
using CSP, Hoare’s language of Communicating Sequen-
tial Processes [15] [16], which is suitable for various types
of analysis and investigation, and as the basis for fully for-
mal implementations as well as automated test case genera-
tion, etc.

R2D2C is unique in that it allows for full formal devel-
opment from the outset, and maintains mathematical sound-
ness through all phases of the development process, from re-
quirements through to automatic code generation. The ap-
proach may also be used for reverse engineering, that is,
in retrieving models and formal specifications from exist-
ing code (Figure 2). The method can also be used to “para-
phrase” (in natural language, etc.) formal descriptions of ex-
isting systems. In addition, the approach is not limited to



generating executable code. It may also be used to generate
business processes and procedures, and we are currently ex-
perimenting with using it to generate instructions for robotic
devices to be used on the Hubble Robotic Servicing Mission
(HRSM). We are also experimenting with using it as a ba-
sis for an expert system verification tool, and as a means of
capturing expert knowledge for expert systems. Such poten-
tial applications will be described in Section 4.

3. Technical Approach

Section 3.1 describes R2D2C at a relatively high level.
Section 3.2 describes an intermediate version of the ap-
proach for which we have built a prototype tool [23], and
with which we have successfully undertaken some exam-
ples.

3.1. R2D2C

The R2D2C approach involves a number of phases,
which are reflected in the system architecture described in
Figure 3. The following describes each of these phases.

D1 Scenarios Capture: Engineers, end users, and others
write scenarios describing intended system operation.
The input scenarios may be represented in a con-
strained natural language using a syntax-directed ed-
itor, or may be represented in other textual or graphi-
cal forms.

D2 Traces Generation: Traces and sequences of atomic
events are derived from the scenarios defined in D1.

D3 Model Inference: A formal model, or formal specifi-
cation, expressed in CSP is inferred by an automatic
theorem prover – in this case, ACL2 [18] – using the
traces derived in phase 2. A deep1 embedding of the
laws of concurrency [14] in the theorem prover gives
it sufficient knowledge of concurrency and of CSP to
perform the inference. The embedding will be the topic
of a future paper.

D4 Analysis: Based on the formal model, various analy-
ses can be performed, using currently available com-
mercial or public domain tools, and specialized tools
that are planned for development. Because of the na-
ture of CSP, the model may be analyzed at different
levels of abstraction using a variety of possible imple-
mentation environments. This will be the subject of a
future paper.

D5 Code Generation: The techniques of automatic code
generation from a suitable model are reasonably well
understood. The present modeling approach is suitable

1 “Deep” in the sense that the embedding is semantic rather than merely
syntactic.
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Figure 3. The entire process with D1 thru D5
illustrating the development approach and
R1 thru R4 the reverse engineering.

for the application of existing code generation tech-
niques, whether using a tool specifically developed for
the purpose, or existing tools such as FDR [5], or con-
verting to other notations suitable for code generation
(e.g., converting CSP to B [3] and then using the code
generating capabilities of the B Toolkit).
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Figure 4. Reverse engineering of system us-
ing R2D2C.

It should be re-emphasized that the “code” that is gen-
erated may be code in a high-level programming lan-
guage, low-level instructions for (electro-) mechanical
devices, natural-language business procedures and instruc-



tions, or the like. As Figure 4 illustrates, the above process
may also be run in reverse:

R1 Model Extraction: Using various reverse engineering
techniques [25], a formal model expressed in CSP may
be extracted.

R2 Traces Generation: The theorem prover may be used
to automatically generate traces based on the laws of
concurrency and the embedded knowledge of CSP.

R3 Analysis: Traces may be analyzed and used to check
for various conditions, undesirable situations arising,
etc.

R4 Paraphrasing: A description of the system (or system
components) may be retrieved in the desired format
(natural language scenarios, UML use cases, etc.).

Paraphrasing, whereby more understandable descrip-
tions (above and beyond existing documentation) of ex-
isting systems or system components are extracted, is
likely to have useful application in future system mainte-
nance for systems whose original design documents have
been lost or systems that have been modified so much that
the original design and requirements document do not re-
flect the current system.

3.2. Short-cut R2D2C

The approach described in Section 3.1 is the way that
R2D2C is intended to be applied, from requirements speci-
fication through to code generation. However, the approach
requires significant computing power in the form of an au-
tomated theorem prover performing significant inferences
based on traces input and on its “knowledge” of the laws of
concurrency. While this is well warranted for certain appli-
cations, it is likely to be beyond the resources of many de-
velopers and organizations. As a practical concession, we
also define a reduced version of R2D2C called the short-
cut version (Figure 5), whereby the use of a theorem prover
is avoided, yet without sacrificing high confidence in the va-
lidity of the approach. The following describes each of the
phases for the shortcut R2D2C:

S1 Scenarios Capture: As before, intended system behav-
ior is described by scenarios input in natural language
or an appropriate graphical or semi-formal notation.

S2 Translation to Intermediate Notation: Scenarios are
translated to an intermediate notation, termed EzyCSP,
which is a simple natural language-like subset of CSP
that can be used to describe a large number of situa-
tions and scenarios (recall that scenarios are domain
specific).

S3 Analysis: While far more simple than CSP, EzyCSP al-
lows some simple analyses to be performed.

S4 Implementation in Java: EzyCSP is sufficiently simple
that it may easily be translated to Java and executed.

This simplified or short-cut approach clearly has signif-
icant disadvantages when compared to our full approach.
Firstly, the correctness of the development process is con-
tingent on the correctness of both the translation of scenar-
ios to the intermediate (EzyCSP) notation and the transla-
tion of EzyCSP to Java. However, the correctness of the
translators for these is assured via a proof of correctness
undertaken with the ACL2 theorem prover. Secondly, we
do not have a reverse process suitable to support reverse
and (ultimately) re-engineering, for free. However, a Java-
to-EzyCSP translator would certainly be possible for highly
constrained subsets of Java.

The significant advantage of this simplified approach,
however, is that although a proof of correctness involving
a theorem prover is still required, this is required exactly
once and would be performed by the support system devel-
opers (presumably expert in the art). This is significantly
less expensive computationally than using a theorem prover
in the development of each individual application.
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Figure 5. Short cut R2D2C.

4. Application Areas

The motivation for this work was the need for
requirements-based programming for ultra high depend-
ability systems. The method described in this paper is
applicable in a number of areas, with potentially signifi-
cant value in the following:

Sensor Networks
NASA is currently conducting research and development

on sensor networks for planetary and solar system explo-
ration as well as to support its Mission to Planet Earth.



An example of a sensor network for solar system explo-
ration is the Autonomous Nano Technology Swarm mis-
sion (ANTS) [4], which is at the concept development
phase. This mission will send 1,000 pico-class (approxi-
mately 1 kg) spacecraft to explore the asteroid belt. The
ANTS spacecraft will act as a sensor network making obser-
vations of asteroids and analyzing their composition. Sensor
networks are also being considered for planetary (e.g., Mar-
tian) exploration, to yield scientific information on weather
and geology. For the Mission to Planet Earth, sensor net-
works are already being researched and developed towards
capabilities for early warnings about natural disasters and
climate change.

Projected NASA sensor networks are highly distributed
autonomous “systems of systems” that must operate with a
high degree of reliability. The solar system and planetary
exploration networks will necessarily experience long com-
munications delays with Earth, will partly and occasionally
be out of touch with the Earth and mission control for long
periods of time, and must operate under extremes of dy-
namic environmental conditions. Due to the complexity of
these systems as well as their distributed and parallel nature,
they will have an extremely large state space and will be
impossible to test completely using traditional testing tech-
niques. The more “code” or instructions that can be gener-
ated automatically from a verifiably correct model, the less
likely that human developers will introduce errors. In addi-
tion, the higher the level of abstraction that developers can
work from, as is afforded through the use of scenarios to de-
scribe system behavior, the less likely that a mismatch will
occur between requirements and implementation and the
more likely that the system can be validated. Working from
a higher level of abstraction will also allow errors in the
system to be more easily caught, since developers can bet-
ter see the “big picture” of the system. In addition to allow-
ing complex systems developers to work at a higher level of
abstraction, R2D2C also converts the scenarios into a for-
mal model that can be analyzed for concurrency-related er-
rors and consistency and completeness, as well as domain-
specific errors.

Expert Systems
We have been studying the potential use of this approach

in the development, maintenance, and verification of expert
systems. In particular, we have been giving consideration
to using the R2D2C method in verifying the expert system
used in the NASA ground control center for the POLAR
spacecraft, which performs multi-wavelength imaging of
the Earth’s aurora. The POLAR ground control expert sys-
tem has rules written in the production system CLIPS [6] for
automated “lights out” (untended) operation of the space-
craft. A suitable translator from CLIPS (rather than natu-
ral language) to CSP (or EzyCSP) enables us to use this
technology to examine existing expert system rule bases for

consistency, etc. What has proven to be of great interest,
however, is the ability to generate CLIPS rules from CSP (or
EzyCSP), just as we would generate code in Java or C++.
POLAR ground control center personnel expect this would
be a great benefit because it would give them a means of
capturing expert knowledge, from natural language descrip-
tion through to CLIPS rules, while maintaining correctness,
which heretofore has not been available.

Robotic Operations
As pointed out earlier, the “code” generated by this ap-

proach need not be specifically code in a programming lan-
guage, and we have been experimenting with generating
code to control robots. Perhaps more interesting is the use
of this approach to investigate the validity and correctness
of procedures for complex robotic assembly or repair tasks
in space. We have begun exploratory work in this direction,
to provide an additional means to validate procedures from
the Hubble Robotic Servicing Mission (HRSM) – for exam-
ple, the procedures for replacement of cameras on the Hub-
ble Space Telescope (HST).

5. Related Work

Harel [8] [10] has advocated scenario-based program-
ming through UML use cases and play-in scenarios. The
present work differs in that it uses scenarios in the form
of structured text that is easily understandable by engineers
and non-engineers. In addition, the results of converting the
structured text to traces and then from traces to a formal
model allows us to use a wide range of formal methods tools
(e.g., model checkers), which can be used to verify and val-
idate the system.

NASA Ames has been working on the automatic trans-
lation of UML use cases to executable code, and report suc-
cess in using the approach on large applications [26]. Our
approach is different, however, in that we are not limited
to UML use cases, nor to natural language. R2D2C ac-
commodates any input mechanism whereby requirements
can be represented as scenarios, and traces extracted. Our
approach works equally well with graphical, mathemati-
cal, and textual requirements representations. More impor-
tantly, the key to our approach and what makes it invalu-
able for high-dependability applications is the full formal
basis, and complete mathematical tractability from require-
ments through to code. To our knowledge, no other cur-
rently available automated development methodology can
make this claim.

6. Conclusions and Future Work

R2D2C is a unique approach to the automatic derivation
of ultra-high dependability systems. It is unique in that it
supports fully (mathematically) tractable development from



requirements elicitation through to automatic code genera-
tion (and back again). While other approaches have sup-
ported various subsets of the development lifecycle, there
has been heretofore a “jump” in deriving from the require-
ments the formal model that is a prerequisite for sound au-
tomatic code generation. Yet, R2D2C is a simple approach,
combining techniques and notations that are well under-
stood, well tried and tested, and trusted. The novelty of the
approach, and the part of the approach that achieves conti-
nuity in the development process, is the use of a theorem
prover to reverse the laws of concurrency, and to achieve
levels of inference that would be impossible for a human
being to perform on all but trivial systems.

R2D2C (and other approaches that similarly provide
mathematical soundness throughout the development life-
cycle) will decrease costs and delays for the engineering
(and re-engineering) of ultra-high dependability systems
through automated development. Such technology will dra-
matically increase assurance of system success by ensuring
that requirements are complete and consistent, implementa-
tions are true to the requirements, automatically coded sys-
tems are bug-free, and implementation behavior is as ex-
pected.

Future work will include improving the quality of the
embedding of CSP in ACL2, and optimizing that for effi-
ciency. We plan a plethora of support tools to allow us to
easily change the level of abstraction in a formal model, to
visualize various system models and changes in those mod-
els, and to aid in tracking changes through the development
process (or the reverse engineering process). We plan to en-
hance our existing prototype to support the full version of
R2D2C, to make it into a fully functional robust proto-
type, and to apply it to significant examples.
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